Characterizing deformability and surface friction of cancer cells.
نویسندگان
چکیده
Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.
منابع مشابه
Deformability-based cell selection with downstream immunofluorescence analysis.
Mechanical properties of single cells have been shown to relate to cell phenotype and malignancy. However, until recently, it has been difficult to directly correlate each cell's biophysical characteristics to its molecular traits. Here, we present a cell sorting technique for use with a suspended microchannel resonator (SMR), which can measure biophysical characteristics of a single cell based...
متن کاملDesigning and Characterizing Nano-carriers Containing Nepeta Persica Extract and Their Effect on Bone Cancer
Aims Niosomes have been considered as carriers for targeted delivery of drugs in modern drug delivery systems. The Iranian Nepta (Nepta genus) has unique biological properties; thus, this plant was used in this study to prepare the optimized formulation of niosomes containing extract, and to evaluate its cytotoxicity. Methods & Materials Initially, the extract of Iranian Nepta (N. persica) was...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملسلول های بنیادی سرطانی: ناهمگونی در سلولهای سرطانی و راهکارهای نانوتکنولوژی در درمان آنها
Cancer stem cells are believed to be responsible for the cancer-initiating step and resistance to chemotherapy drugs. Studies have shown that cancer stem cells are silent and have no metabolic activity. The main reasons behind tumors resistant to therapies are lack of activity of cancer stem cells and division of cancer cells. This cell population, like normal stem cells, is capable of self-ren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 19 شماره
صفحات -
تاریخ انتشار 2013